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ABSTRACT Oxidation is a common degradation pathway that
affects therapeutic proteins and peptides during production, purifi-
cation, formulation, transportation, storage and handling of solid
and liquid preparations. In the present work we review the scientific
literature about structural and biological consequences of protein/
peptide oxidation. Representative examples are discussed of spe-
cific products whose oxidation has been recently studied, including
monoclonal antibodies, calcitonin, granulocyte colony-stimulating
factor, growth hormone, insulin, interferon alpha and beta, oxytocin
and parathyroid hormone. These examples illustrate that oxidation
often leads to modifications of higher-order structures, including
aggregate induction, and can generate products that are
pharmacokinetically different, biologically less active and/or poten-
tially more immunogenic than their native counterpart. It is there-
fore crucially important during the pharmaceutical development of
therapeutic proteins and peptides to comprehensively characterize
oxidation products and evaluate the impact of oxidation-induced
structural modifications on the biological properties of the drug.

KEY WORDS aggregation . immunogenicity . oxidation .
peptides . proteins

INTRODUCTION

In the last thirty years proteins and peptides have gained impor-
tance in the treatment of a broad number of diseases for which

no other therapy is available (1). Instability, however, represents a
serious problem in the development of therapeutic proteins and
peptides (2).

In particular oxidation, which has been reported to occur
during production (3), purification (4), formulation (5) and
storage (6), is a major concern (7), as it can extensively modify
the primary structure of proteins and peptides, by which
changes in secondary, tertiary and quaternary structure may
arise (8–10). Whereas there are several excellent reviews de-
scribing oxidation mechanisms (11), products of amino acid
oxidation (12–16), the biochemical basis of protein oxidation
(17,18), strategies to prevent oxidation (2,11,12) andmethods to
detect protein oxidation (17, 18), to the best of our knowledge,
only one review, published twenty years ago, described the
pharmaceutical consequences of protein oxidation (19). At that
time, however, experimental data about biological conse-
quences of oxidation were scarce. Here we aim to give an
update on the current knowledge about the consequences of
oxidative modification for amino acid residues (i.e. primary
structure), higher-order structures (i.e. secondary, tertiary and
quaternary structure), biological activity, half-life and immuno-
genicity of several protein and peptide therapeutics.

After briefly introducing the potential causes of oxidation
during production, purification, formulation and storage, we
will discuss the consequences of oxidation for: monoclonal
antibodies (mAbs), calcitonin (CT), granulocyte colony-
stimulating factor (G-CSF), growth hormone (GH), insulin,
recombinant human interferon alpha-2a (IFNα2a) interferon
alpha-2b (IFNα2b) and interferon beta-1a (IFNβ1a), oxytocin
and parathyroid hormone (PTH).

OXIDATION OF PROTEINS AND PEPTIDES

Most biopharmaceuticals are produced by recombinant DNA
technologies, usually by employing microbial hosts like E. coli
(20) or mammalian cells like Chinese hamster ovary (CHO)
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cells (21). Already during the production steps, the concentra-
tion of dissolved oxygen (DO) can influence the oxidative state
of therapeutic proteins, as demonstrated for the production in
E. coli of recombinant human IFNγ, where an increase in
carbonyl groups (18) (a general marker of oxidative modifica-
tion) correlated with a relatively high DO concentration (i.e.
60% DO), suggesting that the aerobic environment should be
scrupulously monitored (3). However, also low oxygen concen-
tration (a condition known as hypoxia) may induce oxidative
stress through the production of reactive oxygen species in
mammalian host cells, likely generated by electrons leaking
from the mitochondrial electron transport chain (22–25). In
support of this, oxidation-induced fragmentation of recombi-
nant human IgG1 produced in CHO cells was observed in the
purified material and, interestingly, the same degradation was
reproduced by in vitro incubation of the protein with hydrogen
peroxide (26).

Besides oxidation that may arise during the production in
cell culture, oxidation can occur in the subsequent down-
stream processes. For instance, purification of lactate dehy-
drogenase, using metal affinity chromatography, yielded an
oxidized product (4).

During formulation and storage several excipients and
impurities can directly or indirectly favor oxidation. For in-
stance, formaldehyde and hydrogen peroxide have been en-
countered as impurities in polymeric excipients such as poly-
ethylene glycol (PEG) or polysorbate (5,27). Additionally,
these polymeric excipients can spontaneously oxidize in aero-
bic environment, without the aid of a catalyst (auto-oxidation)
(28,29), generating several peroxides, whose production how-
ever can be reduced with some antioxidants (2,30). Among the
impurities which might favor oxidation, transition metals rep-
resent a common threat, as they can catalyze oxidation reac-
tions (14), already at submicromolar concentration (31). Fur-
thermore, transition metals being air pollutants (32,33) may
contaminate buffers (34) and excipients such as sugars, surfac-
tants and amino acids (35). Also, they can be released from
containers (11), making it difficult to fully avoid their presence
in formulations.

CHEMICAL MODIFICATIONS IN AMINO ACIDS
INDUCED BY OXIDATION

Potentially all 20 natural amino acids can be oxidized (16),
however, cysteine (Cys), histidine (His), methionine (Met),
phenylalanine (Phe), tryptophan (Trp) and tyrosine (Tyr) are
generally most prone to oxidation, due to the high reactivity of
sulfur atoms and aromatic rings towards various reactive
oxygen species (12). Table I provides a comprehensive sum-
mary of reported cases of protein/peptide oxidation, includ-
ing the chemical changes in primary structure, changes in
higher-order structure and observed biological consequences.

As oxidative modifications at the amino acid level have been
extensively reviewed elsewhere (12,13,16), we focus the dis-
cussion below on the higher-order structural consequences
and the biological consequences observed for several repre-
sentative protein and peptide drugs.

CONSEQUENCES OF PROTEIN AND PEPTIDE
OXIDATION

Monoclonal Antibodies

All human IgGs feature a characteristic “Y” shape (36): the
lower part contains a single crystallizable region (Fc) critical
for effector functions and half-life (37). The upper part consists
of two identical regions (Fab) that contain the complementar-
ity determining regions (CDRs) responsible for antigen bind-
ing (38). Most mAbs belong to the IgG1 and IgG2 subclasses,
which share 97% of Fc sequence homology (39). The Fc
region can contain up to four Met residues: Met residues at
positions 252 and 428 (based on the Eu numbering system (40)
are conserved in all IgGs (41), the presence ofMet 358 in IgG1
is dependent on the allele of the gene (42), while Met 397 is
only present in IgG2 and IgG3 (43). Modification of any of
these Met residues may adversely affect the Fc-dependent
effector function of mAbs (43).

Several authors investigated the susceptibility to oxidation
of Met residues under different stress or storage conditions
(44–48). However, few studies reported the consequences of
such modifications on protein structure and pharmacokinet-
ics. Oxidation of Met 252 and Met 428 reduced the binding
with Protein A (49) (a protein often used in affinity chroma-
tography) and the neonatal Fc receptor (FcRn) (39,50). This
can reduce the biological half-life of the antibody, as shown by
Wang et al . (51), who demonstrated that a mAb containing
80% of oxidized Met 252 features a more than 4-fold reduc-
tion in the half-life in transgenic mice with human FcRn.
When the percentage of Met oxidation was lower, i.e. 40%,
the measured half-life was comparable to that of the native
mAb. Liu et al . (52) noticed that hydrogen peroxide-induced
oxidation of Met residues in E. coli-expressed Fc, resulted in
alteration of secondary and tertiary structure, evaluated by
circular dichroism spectroscopy, and in a reduced melting
temperature of the CH2 domain (note that Liu et al . referred
to Met 33 and Met 209, which correspond to Met 252 and
Met 428 on the intact heavy chain sequence). It must be
mentioned that the Fc used was produced in E. coli and thus
lacks glycosylation, which is important for protein stability:
Met oxidation in a glycosylated IgG1 led to similar changes in
the thermal stability but conformational changes of the anti-
body with oligosaccharides where minor, indicating a partial
protective effect of the sugar moiety (53,54). Interestingly, also
the deamidation rate of Asn 67 and Asn 96 increased, likely as
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a result of Met oxidation-mediated conformational changes
(52). Destabilization of the α-helix of the residues 247–253 of
the Fc region of IgG1 was also observed upon hydrogen
peroxide treatment (55,56). These results suggest that oxida-
tion of Met residues can result in conformational changes of
mAbs.

Metal catalyzed oxidation (MCO) of a monoclonal human
IgG, induced by Cu2+/ascorbate, generated mainly micron-
sized aggregates with secondary and tertiary structure alter-
ations that were immunogenic in a transgenic, immune-
tolerant mouse model (57). Although results obtained in ani-
mal models do not predict the level of immunogenicity in
human patients, such models (especially transgenic animal
models) are considered valuable for testing whether certain
impurities (such as aggregates, oxidized products, etc.) may
increase the immunogenicity of protein therapeutics (58–60).

A monoclonal IgG2 was evaluated under similar stress
conditions and the authors observed severe changes in sec-
ondary and tertiary structure, associated with the site specific
oxidation of His 304 and His 427, besides oxidation of several
Met residues and of Trp 156 (61,62). Also particles in the size
range between 0.2–10 μm were detected. Nonetheless, oxida-
tion via Cu2+ (copper (II) sulfate) has been successfully used
during fermentation of a humanized antibody to facilitate
disulfide bond formation. This prevented the production of
less potent, free thiol-containing fragments (63).

Similarly, oxidation of IgG2 with hydrogen peroxide in-
duced the formation of polydisperse aggregates and Met
oxidation, but not the oxidation of His or Trp (61,62).

Hensel et al. suggested that the oxidation of Trp 32 (in the
CDR region of the light chain) was mainly responsible for the
progressive loss of target binding and biological activity (64).
Similarly, the oxidation of Trp 105, a residue in the CDR3 of
the heavy chain of a humanized mAb against respiratory syncy-
tial virus, was considered responsible for the activity loss (65).

Another important oxidative chemical modification which
might occur in vitro and was measured in vivo is glycation of
IgG, i.e. the formation of a covalent adduct between the
protein and glucose (involving loss of hydrogen atoms from
amino groups). Despite the glycation of several residues, no
changes in the tested Fc functions were observed (66) .

Altogether, these results demonstrate that Met is only one
of the potential targets of oxidation and oxidation frequently
compromises the conformation and biological functions of
monoclonal IgGs.

Calcitonin

CT is a polypeptide hormone of 32 amino acids which, in
aqueous solution, assumes an unstructured conformation (67).
Mainly human and salmon calcitonin (hCT and sCT, respective-
ly) are used for therapeutic purposes. The two polypeptides share
only 50% sequence homology, nonetheless higher order

structural features are similar between the two hormones (67).
In aqueous solution, hCT tends to aggregate faster than sCT,
causing the formation of fibrillar precipitates (67).

Aggregated and oxidized forms of hCT were observed
in vivo in plasma under non-pathological conditions (68), jus-
tifying studies on the consequences of CT oxidation. Although
hCT contains Met, His, Phe and Tyr residues, all of which are
potential oxidation targets, oxidation (during storage or forced
oxidative stress) of this polypeptide hormone appears to affect
mainly Met 8, the only Met residue available. Reduction of
bioactivity was observed upon oxidation of Met 8 (69,70);
however, more recently it was found that the aggregation rate
of Met oxidized hCT decreased (71), illustrating that oxida-
tion not necessarily accelerates aggregation.

Aggregation of sCT accompanied by alteration of second-
ary structure was observed upon hydrogen peroxide treat-
ment (72): this suggests that mild oxidative conditions are
capable of inducing structural changes in sCT.

Dimers involving Cys residues as well as a trisulfide deriv-
ative were measured in a different study investigating the
stability of the hormone in aqueous solutions (73). These
findings suggest that aggregation involving disulfide scram-
bling of the thiol groups can be involved in sCT aggregation.

When testing the effect of hydroxyl radicals generated via a
modified Fenton reaction (60-W tungsten lamp in combination
with ferrous sulfate and ascorbic acid), sCT amyloid aggregates
were detected. Interestingly, they were structurally similar to
what was observed in vivo for hCT, in carcinoma medullary
plaques (67).

In conclusion, in vitro oxidation of CT might produce
fibrillar aggregates similar in structure as those observed
in vivo . Met and Cys residues seem to be responsible for the
observed structural changes. However, it is still poorly inves-
tigated if oxidation of His and Tyr, both present in hCT as
well as sCT, can occur and contributes to aggregation or
structural changes of this polypeptide.

Granulocyte Colony-Stimulating Factor

Recombinant human G-CSF contains 175 amino acid resi-
dues, several of which are susceptible to oxidation (74).

Simultaneous oxidation of all fourMet residues (in position 1,
122, 127 and 138) resulted in a dramatic decrease of the biolog-
ical activity to 3% (75). The biological activity of the HPLC
fraction containing G-CSF with onlyMet 1 oxidized, was largely
retained (i.e. 80% relative to G-CSF prior to oxidation), indicat-
ing that this residue is less important for the activity. In addition,
engineered variants of G-CSF, where eitherMet 127 orMet 138
was replaced by leucine (Leu), were still sensitive to oxidation-
induced inactivation. However, the variant with Leu replace-
ment at both sites was more stable and retained in vitro biological
activity following oxidative stress. All these experiments suggest
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that oxidation ofMet 127 andMet 138 accounted formost of the
activity loss (75).

Besides oxidation of Met residues in G-CSF, Cys oxidation
is a point of concern. Under physiological conditions (37°C,
pH 7.0), G-CSF showed a significant propensity to aggregate.
Several studies demonstrated that the free Cys in position 17,
upon oxidation, forms a new disulfide bridge that is responsi-
ble for G-CSF aggregation (74,76,77).

Growth Hormone

Oxidative modifications of recombinant human growth hor-
mone (hGH) have been widely described (Table I), mainly with
respect to Met oxidation. Relatively mild oxidative conditions,
attained during exposure to hydrogen peroxide, have been re-
ported to lead to selective generation of Met sulfoxides from the
twomost accessibleMet residues in hGH (Met 14 andMet 125).
Although this does not seem to induce gross conformational
changes (78,79), the thermal stability of the protein dropped
(80). This may be due to the generation of Met 14 and 125
sulfoxides, which increases the polarity and the size of these
amino acids; furthermore the new hydrogen bond networks that
the protein can establish, may contribute to the observed de-
crease in thermal stability (80). Cunningham et al. showed that
Met 14 contributes only slightly to the binding of the hormone to
its receptor (81). In agreement with this study, the oxidation of
Met 14 and Met 125 was reported to have little effect on hGH’s
receptor affinity and potency (79).

In contrast, Met 170 is located within the core of the native
protein (82). Nevertheless, the mass spectrometric analysis of a
marketed hGH product (Genotropin®, expressed in E. coli
K12 ) revealed that 2% of the expressed protein contains
several chemical modifications, including Met 170 sulfoxide
(83). This residue is located on the alpha helix IV of hGH,
which is involved in one of the two receptor binding sites (82).

Steinmann et al . detected the oxidation of Met 170 (togeth-
er with that of Met 14 and Met 125) during the exposure of
hGH to peroxyl radicals generated from 2,2′- azobis(2-
methylpropionamidine) (AAPH) (84). In addition, the authors
detected di-tyrosine, Leu 101 hydroperoxide and several ox-
idation products of Tyr 103. These oxidation conditions led to
the formation of dimers (21%) and trimers (13%).

Light exposure resulted in the selective oxidation of His 21
(85). Furthermore, MCO, induced by exposure to Cu2+/
ascorbate, specifically modified His 18 and His 21, which
are both located on helix I and are critical for the integrity
of the metal binding site of this hormone (86,87).

Insulin

One of the first reported experiments involving insulin oxida-
tion dates back to 1948 when Frederick Sanger employed a
mixture of hydrogen peroxide and formic acid, which

generates performic acid, to fractionate insulin’s A and B
chains. Previously reduced Cys residues were oxidized to
cysteic acid and also Tyr oxidation products were observed
(88). Since then, insulin oxidation has been extensively
investigated.

Covalent aggregation of lyophilized insulin was observed
upon storage at different temperatures and moisture contents
(89). Reduction of the native disulfide bridge followed by re-
oxidation was responsible for new intermolecular disulfide
bridges that mediate aggregate formation. Furthermore, ag-
gregation involving Cys residues does not necessarily require
the presence of this amino acid in its reduced form (i.e. free
thiol groups) (89).

Therapeutic formulations of insulin, in solution or in sus-
pension, analyzed after long term stability studies contained
dimers and oligomers resulting from reduction-oxidation of
Cys residues (89). Formation of insulin aggregates with altered
3D structure was observed upon MCO using Cu2+/ascor-
bate. In particular, the Tyr oxidation products 3,4-
dihydroxyphenylalanine (DOPA) and 2-amino-3-(3,4-
dioxocyclohexa-1,5-dien-1-yl) propanoic acid (DOCH) were
observed (9). The latter, being an electrophile, was shown to
be involved in covalent cross-links with several amino groups
of the insulin molecule, which led to new intra- and
intermolecular cross-links. This oxidized and aggregated in-
sulin induced anti-insulin antibodies when injected in trans-
genic mice immune tolerant for human insulin (unpublished
data). Interestingly, Cu2+/ascorbate-induced aggregation and
fragmentation of insulin was substantially inhibited when for-
mulating the protein with triethylenetetramine (90). MCO
also led to the oxidation of His B5 and B10, which are
important binding sites for zinc ions that play a central role
in the formation of insulin’s quaternary structure (91,92).

In the presence of zinc ions, insulin exists as hexamers (93),
which are the main components in several long-acting thera-
peutic insulin formulations (94). Oxidative stress that targets
insulin’s His residues involved in zinc ion binding can there-
fore result in unexpected pharmacokinetics.

Several studies have investigated the oxidative modifications
that insulin can undergo in diabetic patients. Subjects affected
by diabetes have generally high glucose plasma concentrations
(hyperglycemia) and display oxidative stress associated with a
decrease in the concentration of biological antioxidants such as
reduced glutathione (GSH) (95). The former event is responsi-
ble for glycation of insulin, i.e. the formaton of a covalent
adduct between insulin and glucose, where insulin is oxidized
(loss of hydrogen atoms from amino groups). Glycated insulin
has been measured in vivo and its biological activity was de-
creased (96). Another important consequence of hyperglycemia
is the generation of α-oxoaldehydes like glyoxal, methylglyoxal
and 3-deoxyglucosone (97), which can react with insulin gener-
ating aggregates of oxidized insulin (98). Furthermore, oxida-
tive stress is responsible for lipid peroxidation of n-3 and n-6
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polyunsaturated fatty acids, which eventually generates reactive
aldehydes such as 4-hydroxy-2-hexenal and 4-hydroxy-2-
nonenal (99). The reaction between insulin and these reactive
aldehydes (α, β unsaturated carbonyl compounds) occurs
through Michael addition and introduces new carbonyl groups
in the insulin molecule (99). Glucose uptake as well as the
hypoglycemic effect in mice was significantly reduced after
treatment with insulin oxidized with reactive aldehydes, com-
pared to treatment with native insulin (99).

More recently, based on the hypothesis that the plasma
copper ion concentration is higher in diabetic patients than in
normal subjects, Cheng et al . studied the copper induced
catalyzed oxidation of glycated insulin, which yielded aggre-
gates, fragments and oxidation products (100).

Similarly, Guedes et al . investigated MCO of glycated
insulin using the Fenton reaction, which induced aggregation
and fragmentation of oxidized glycated insulin (101). It is
noteworthy that besides oxidation, insulin was found to be
glycated on several sites including the N-terminal Gly A1,
which is important for the biological activity (101,102).

Montes-Cortes et al . (103) discovered that the incubation of
insulin with plasma from diabetic patients resulted in Tyr
oxidation products, increased carbonyl content and decreased
biological activity, similar to what observed upon Fenton
oxidation of insulin (103,104). These results suggest that a
correlation between in vivo and in vitro oxidation may exist
and that oxidative modifications on the insulin molecule can
decrease the biological activity of this polypeptide hormone.

Interferon Alpha

During storage, particularly at neutral and acidic conditions,
IFNα2a is known to undergo oxidation of Met residues (105).

Hydrogen peroxide-induced oxidation generated an
IFNα2a variant that featured reduced specific biological ac-
tivity (106), but the sites of oxidation were not determined.

Immunogenicity of oxidized and aggregated IFNα2a, for-
mulated as lyophilized powder and stored at ambient temper-
ature, was evaluated in patients: the oxidized form was more
immunogenic than several other formulations of non-oxidized
rhIFNα2a (107,108). Recently IFNα2a oxidized by Cu2+/
ascorbate was found to undergo structural modifications and
aggregation; this product was immunogenic in a transgenic
mousemodel immune-tolerant for human IFNα2 (unpublished
results).

In IFNα2b, all of the 5 Met residues are sensitive to
oxidation in solution under different tested storage conditions
(109). Here, Met 111 oxidizes very easily and IFNα2b con-
taining oxidized Met 111 has been detected in a cream for
topical use (110). The alpha-helical content of the protein
containing oxidized Met 111 was slightly decreased parallel
to an increase in the beta-sheet contribution; however, the
biological activity was not affected (111).

MCO of IFNα2b, where Met 16, Met 21 and Met 148
were converted into the sulfoxide derivatives, generated ag-
gregates that were immunogenic in the transgenic immune
tolerant mouse model mentioned above (112).

Interferon Beta

Under mild oxidative conditions, achieved with hydrogen
peroxide, Orru et al . (113) observed the oxidation of the
surface exposed Met 117 in IFNβ1a, which was the most
reactive Met residue, followed by the oxidation of Met 36
and Met 1. Cys residues and the carbohydrate moiety were
not modified and the biological activity of the protein was fully
retained, pointing to minor consequences ofMet oxidation for
the activity of this cytokine (113).

Free Cys 17 in IFNβ1a can be involved in redox chemistry
as demonstrated by the detection of 2% of disulfide linked
aggregates after prolonged storage (114). Similarly, in the
same protein, the replacement of the free Cys at position 17
with Ser was associated with a decrease of disulfide scram-
bling, suggesting the susceptibility to oxidation of Cys 17 to
form its disulfide derivative (115).

Furthermore, deglycosylated IFNβ1a was more sensitive to
formation of insoluble, disulfide-linked aggregates with dimin-
ished biological activity, indicating a protective role of the
carbohydrate moiety (116).

The oxidation of IFNβ1a with Cu2+/ascorbate generated
covalent aggregates that contained native-like epitopes, had
an average diameter of 1.6 μm and were immunogenic in
transgenic mice immune tolerant for human IFNβ (117).
These aggregates were shown to be cross-linked through 1,4
and 1,6-type addition at Tyr oxidation products (118). Oxi-
dation mediated by hydrogen peroxide of IFNβ1a also yielded
immunogenic IFNβ1a aggregates, but the percentage of mo-
nomeric IFNβ1a was higher compared to the MCO protein
(117).

Oxytocin

Oxytocin is a small peptide which contains a six-amino acid
ring (Cys1, Tyr2, Ile3, Gln4, Asn5, Cys6) and a tail of three
amino acids (Pro7, Leu8, Gly9-NH2) (119). As for CT, oxy-
tocin formed tri- and tetrasulfide derivatives (introduction of
one and two sulfur atoms, respectively, into its chemical
structure) under accelerated degradation conditions at differ-
ent pH and temperature (120).

Besides degradation involving sulfur atoms, heat stressed
oxytocin formulations at pH 4.5, 7.0 and 9.0, generated also
di-tyrosine-linked dimers, albeit at low percentages (120).

Rosei et al . showed that Tyr 2 in the oxytocin molecule,
even though it is located internally in the primary sequence,
functions better as hydrogen donor than free Tyr (121).
Hence, Tyr radicals, which are precursors in the generation
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of di-tyrosines (122), can be easily formed in the oxytocin
molecule.

Parathyroid Hormone

Synthetic parathyroid hormone contains two Met, three His,
one Trp and one Phe, residues which are particularly
oxidation-sensitive under several applied experimental condi-
tions (35).

Oxidation of this hormone has been detected in blood from
patients with renal disease (123). During long term storage of
hPTH (1–34) up to 24 weeks at room temperature, oxidation-
induced aggregation and loss of secondary structure were
observed. Although the oxidation sites were not determined,
it was found that sucrose substantially reduced hPTH (1–34)
oxidation. This protective effect was due to a more compact
conformation that the hormone assumed in presence of the
sugar, where amino acid residues sensitive to oxidation are
more buried (124).

hPTH (1–34) features minimal tertiary structure (125), but
the secondary structure is well defined and consists of approx-
imately 33% alpha-helical content and 32% ß-sheet (126).
Circular dichroism spectroscopic studies indicated that most
of the secondary structure resides in the N-terminal region of
this hormone, in agreement with the findings that oxidation of
Met, close to the N-terminal region, produces substantial
changes, while oxidation of Met 18 has a small impact on
the secondary structure (126). This finding correlated well
with the observed alteration in biological activity: oxidation
of Met 8, caused a remarkably larger suppression of the
activity when compared to that ofMet 18 (127).More recently
it was discovered that oxidation of Met 8 (into a sulfide radical
cation during Fenton oxidation) results in the specific hydro-
lysis of the peptide bond between Met 8 and His 9, suggesting
that also fragmentation of PTH (1–34) can occur during
oxidation catalyzed by iron (II) (128).

A similar decreased activity by oxidation was ob-
served for bovine (129) and porcine PTH, which both
share Met 8 with the human counterpart (130). Thus,
the region around Met 8 is important for the activity.
Nonetheless Met 18 in human PTH is another receptor
recognition site (131, 132), which would explain why the
activity further decreased when both Met 8 and Met 18
are oxidized (127). Based on these results the native
secondary structure seems to be essential for receptor
binding, as it is strongly perturbed upon oxidation of
Met residues (126). Additional studies indicated that
Met 18 oxidizes more easily than Met 8, probably
because PTH assumes a secondary structure that pro-
tects Met 8 against oxidation. Indeed, unfolding of the
protein with 3 M guanidinium hydrochloride eliminated
this difference, as it generates similarly surface-exposed
Met residues (132).

CONCLUSION

The structural and biological consequences of several thera-
peutic proteins and peptides were reviewed. Redox chemistry
of Cys residues is widely involved in the generation of new
intra- and intermolecular covalent bonds, as observed for
IFNβ1a, insulin, calcitonin and oxytocin.

Met oxidation usually involves solvent-exposed residues
and often results in altered protein conformation and biolog-
ical activity, even when the aggregation state of the protein is
not affected.

His oxidation is generally catalyzed by trace metals that
induce site-specific oxidation and can have drastic conse-
quences on the pharmacokinetics or the activity of the protein,
as observed for insulin and GH.

Phe and Tyr oxidation can yield Tyr oxidation products,
which are electrophiles prone to 1,4- and 1,6-type addition,
(i.e. DOCH, 2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl)
propanoic acid). Such modifications mediated covalent ag-
gregate formation in insulin and IFNβ1a, so this type of
oxidation likely precedes aggregation. Oxidation-induced
aggregation of a monoclonal IgG, IFNα2a, IFNα2b and
IFNβ1a probably occurred via the same mechanism. All
these oxidized and aggregated products were found to be
more immunogenic than their native counterparts in im-
mune tolerant mouse models, and for IFNα2a also in hu-
man patients.

Trp oxidation, although occurring in the minority of the
studied proteins, can also be responsible for bio-activity loss, as
observed in some mAbs.

In conclusion, oxidation of peptides and proteins is an
important degradation pathway. From the case studies
discussed in this review, it is clear that oxidation not only leads
to changes in the primary structure, but also can perturb
higher-order structures and induce aggregation, which in turn
can have important biological consequences, such as altered
pharmacokinetics, loss of function and enhanced immunoge-
nicity. Therefore, it cannot be emphasized enough that con-
trol of oxidation during production, purification, formulation,
transportation, storage and use of therapeutic proteins and
peptides is of utmost importance for their quality, safety and
efficacy.
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